dc.contributor.author | Evgeniou, Theodoros | en_US |
dc.contributor.author | Pontil, Massimiliano | en_US |
dc.date.accessioned | 2004-10-20T20:48:37Z | |
dc.date.available | 2004-10-20T20:48:37Z | |
dc.date.issued | 2000-05-01 | en_US |
dc.identifier.other | AIM-1681 | en_US |
dc.identifier.other | CBCL-184 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/7169 | |
dc.description.abstract | We present distribution independent bounds on the generalization misclassification performance of a family of kernel classifiers with margin. Support Vector Machine classifiers (SVM) stem out of this class of machines. The bounds are derived through computations of the $V_gamma$ dimension of a family of loss functions where the SVM one belongs to. Bounds that use functions of margin distributions (i.e. functions of the slack variables of SVM) are derived. | en_US |
dc.format.extent | 9 p. | en_US |
dc.format.extent | 1149066 bytes | |
dc.format.extent | 253797 bytes | |
dc.format.mimetype | application/postscript | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en_US | |
dc.relation.ispartofseries | AIM-1681 | en_US |
dc.relation.ispartofseries | CBCL-184 | en_US |
dc.subject | AI | en_US |
dc.subject | MIT | en_US |
dc.subject | Artificial Intelligence | en_US |
dc.subject | missing data | en_US |
dc.subject | mixture models | en_US |
dc.subject | statistical learning | en_US |
dc.subject | EM algorithm | en_US |
dc.subject | neural networks | en_US |
dc.subject | kernel classifiers | en_US |
dc.subject | Support Vector Machine | en_US |
dc.subject | regularization networks | en_US |
dc.subject | statistical learning theory | en_US |
dc.subject | V-gamma dimension. | en_US |
dc.title | A Note on the Generalization Performance of Kernel Classifiers with Margin | en_US |