Pre-Attentive Segmentation in the Primary Visual Cortex
Author(s)
Li, Zhaoping
DownloadAIM-1640.ps (817.5Kb)
Additional downloads
Metadata
Show full item recordAbstract
Stimuli outside classical receptive fields have been shown to exert significant influence over the activities of neurons in primary visual cortexWe propose that contextual influences are used for pre-attentive visual segmentation, in a new framework called segmentation without classification. This means that segmentation of an image into regions occurs without classification of features within a region or comparison of features between regions. This segmentation framework is simpler than previous computational approaches, making it implementable by V1 mechanisms, though higher leve l visual mechanisms are needed to refine its output. However, it easily handles a class of segmentation problems that are tricky in conventional methods. The cortex computes global region boundaries by detecting the breakdown of homogeneity or translation invariance in the input, using local intra-cortical interactions mediated by the horizontal connections. The difference between contextual influences near and far from region boundaries makes neural activities near region boundaries higher than elsewhere, making boundaries more salient for perceptual pop-out. This proposal is implemented in a biologically based model of V1, and demonstrated using examples of texture segmentation and figure-ground segregation. The model performs segmentation in exactly the same neural circuit that solves the dual problem of the enhancement of contours, as is suggested by experimental observations. Its behavior is compared with psychophysical and physiological data on segmentation, contour enhancement, and contextual influences. We discuss the implications of segmentation without classification and the predictions of our V1 model, and relate it to other phenomena such as asymmetry in visual search.
Date issued
1998-06-30Other identifiers
AIM-1640
CBCL-163
Series/Report no.
AIM-1640CBCL-163
Keywords
AI, MIT, Artificial Intelligence, visual segmentation, pre-attentive segmentation, primary visual cortex, contextual influences, texture segmentation, contour enhancement, visual pop-out