Show simple item record

dc.contributor.authorSchoelkopf, B.en_US
dc.contributor.authorSung, K.en_US
dc.contributor.authorBurges, C.en_US
dc.contributor.authorGirosi, F.en_US
dc.contributor.authorNiyogi, P.en_US
dc.contributor.authorPoggio, T.en_US
dc.contributor.authorVapnik, V.en_US
dc.date.accessioned2004-10-20T20:48:54Z
dc.date.available2004-10-20T20:48:54Z
dc.date.issued1996-12-01en_US
dc.identifier.otherAIM-1599en_US
dc.identifier.otherCBCL-142en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/7180
dc.description.abstractThe Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by $k$--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application.en_US
dc.format.extent6 p.en_US
dc.format.extent2032389 bytes
dc.format.extent277809 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAIM-1599en_US
dc.relation.ispartofseriesCBCL-142en_US
dc.subjectAIen_US
dc.subjectMITen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectradial basis function networksen_US
dc.subjectsupport vector machinesen_US
dc.subjectpattern recognitionen_US
dc.subjectmachine learningen_US
dc.subjectVC-dimensionen_US
dc.subjectperformance comparisonen_US
dc.subjectmodel selectionen_US
dc.titleComparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiersen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record