Show simple item record

dc.contributor.authorHutchinson, James M.en_US
dc.contributor.authorLo, Andrewen_US
dc.contributor.authorPoggio, Tomasoen_US
dc.date.accessioned2004-10-22T20:14:45Z
dc.date.available2004-10-22T20:14:45Z
dc.date.issued1994-04-01en_US
dc.identifier.otherAIM-1471en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/7287
dc.description.abstractWe propose a nonparametric method for estimating derivative financial asset pricing formulae using learning networks. To demonstrate feasibility, we first simulate Black-Scholes option prices and show that learning networks can recover the Black-Scholes formula from a two-year training set of daily options prices, and that the resulting network formula can be used successfully to both price and delta-hedge options out-of-sample. For comparison, we estimate models using four popular methods: ordinary least squares, radial basis functions, multilayer perceptrons, and projection pursuit. To illustrate practical relevance, we also apply our approach to S&P 500 futures options data from 1987 to 1991.en_US
dc.format.extent397765 bytes
dc.format.extent1887637 bytes
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAIM-1471en_US
dc.titleA Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networksen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record