Model-Based Matching of Line Drawings by Linear Combinations of Prototypes
Author(s)
Jones, Michael J.; Poggio, Tomaso
DownloadAIM-1559.ps (432.4Kb)
Additional downloads
Metadata
Show full item recordAbstract
We describe a technique for finding pixelwise correspondences between two images by using models of objects of the same class to guide the search. The object models are 'learned' from example images (also called prototypes) of an object class. The models consist of a linear combination ofsprototypes. The flow fields giving pixelwise correspondences between a base prototype and each of the other prototypes must be given. A novel image of an object of the same class is matched to a model by minimizing an error between the novel image and the current guess for the closest modelsimage. Currently, the algorithm applies to line drawings of objects. An extension to real grey level images is discussed.
Date issued
1996-01-18Other identifiers
AIM-1559
CBCL-128
Series/Report no.
AIM-1559CBCL-128
Keywords
AI, MIT, Artificial Intelligence, computer vision, scorrespondence, model-based matching