Show simple item record

dc.contributor.authorJones, Michael J.en_US
dc.contributor.authorPoggio, Tomasoen_US
dc.date.accessioned2004-10-20T20:49:13Z
dc.date.available2004-10-20T20:49:13Z
dc.date.issued1996-01-18en_US
dc.identifier.otherAIM-1559en_US
dc.identifier.otherCBCL-128en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/7187
dc.description.abstractWe describe a technique for finding pixelwise correspondences between two images by using models of objects of the same class to guide the search. The object models are 'learned' from example images (also called prototypes) of an object class. The models consist of a linear combination ofsprototypes. The flow fields giving pixelwise correspondences between a base prototype and each of the other prototypes must be given. A novel image of an object of the same class is matched to a model by minimizing an error between the novel image and the current guess for the closest modelsimage. Currently, the algorithm applies to line drawings of objects. An extension to real grey level images is discussed.en_US
dc.format.extent7 p.en_US
dc.format.extent442803 bytes
dc.format.extent265964 bytes
dc.format.mimetypeapplication/postscript
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAIM-1559en_US
dc.relation.ispartofseriesCBCL-128en_US
dc.subjectAIen_US
dc.subjectMITen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectcomputer visionen_US
dc.subjectscorrespondenceen_US
dc.subjectmodel-based matchingen_US
dc.titleModel-Based Matching of Line Drawings by Linear Combinations of Prototypesen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record