A Formulation for Active Learning with Applications to Object Detection
Author(s)
Sung, Kah Kay; Niyogi, Partha
DownloadAIM-1438.ps.Z (579.1Kb)
Additional downloads
Metadata
Show full item recordAbstract
We discuss a formulation for active example selection for function learning problems. This formulation is obtained by adapting Fedorov's optimal experiment design to the learning problem. We specifically show how to analytically derive example selection algorithms for certain well defined function classes. We then explore the behavior and sample complexity of such active learning algorithms. Finally, we view object detection as a special case of function learning and show how our formulation reduces to a useful heuristic to choose examples to reduce the generalization error.
Date issued
1996-06-06Other identifiers
AIM-1438
CBCL-116
Series/Report no.
AIM-1438CBCL-116
Keywords
active learning, optimal experiment design, object detection, example selection