Show simple item record

dc.contributor.authorSung, Kah Kayen_US
dc.contributor.authorNiyogi, Parthaen_US
dc.date.accessioned2004-10-20T20:49:52Z
dc.date.available2004-10-20T20:49:52Z
dc.date.issued1996-06-06en_US
dc.identifier.otherAIM-1438en_US
dc.identifier.otherCBCL-116en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/7209
dc.description.abstractWe discuss a formulation for active example selection for function learning problems. This formulation is obtained by adapting Fedorov's optimal experiment design to the learning problem. We specifically show how to analytically derive example selection algorithms for certain well defined function classes. We then explore the behavior and sample complexity of such active learning algorithms. Finally, we view object detection as a special case of function learning and show how our formulation reduces to a useful heuristic to choose examples to reduce the generalization error.en_US
dc.format.extent40 p.en_US
dc.format.extent593069 bytes
dc.format.extent1090749 bytes
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesAIM-1438en_US
dc.relation.ispartofseriesCBCL-116en_US
dc.subjectactive learningen_US
dc.subjectoptimal experiment designen_US
dc.subjectobject detectionen_US
dc.subjectexample selectionen_US
dc.titleA Formulation for Active Learning with Applications to Object Detectionen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record